Competitive Equilibrium with Complete Markets: Part II

Timothy Kam

School of Economics & CAMA
Australian National University

ECON8022, This version April 8, 2008
ARC EDN Winter School on Money & Pricing

When: 04 Jul 2008 - 08 Jul 2008
Where: Melbourne University

“Money and Pricing” will consist of three main components: lectures in monetary theory (Randy Wright, UPenn) and pricing (Preston McAfee, CalTech/Yahoo!), and presentations by graduate students.

Participants may also be interested in attending the *3rd Annual Workshop on Macroeconomic Dynamics*, which takes place at The University of Melbourne directly preceding the Winterschool: July 2-3. This workshop includes Professors Randall Wright (University of Pennsylvania) and Steven Turnovsky (University of Washington) as plenary speakers.

Outline

1. Model Setup
2. Pareto (recap)
3. ADE ⇔ PO
4. SME
 - A state variable
 - SBC and Debt limits
 - Timing
 - Agents’ problems
5. ADE ⇔ SME
6. RCE
 - Recursive formulation
 - Markovian Asset pricing
 - Arbitrage-free pricing and redundant assets
What Next?

- Competitive/Decentralized equilibrium:
 - Arrow-Debreu time-0-trading economy (ADE) with Arrow-Debreu securities.
 - Radner sequential-trading economy (SME) with Arrow securities.

- Show ADE \Leftrightarrow SME \Leftrightarrow PO.
Motivation

Previously ...

Previously we look at a *planned* economy:

- Single optimizing planner.
- Characterized recursive optimal allocations as a DP problem.
- In reality, we have *decentralized* or *competitive economies.*

Osamu Tezuka’s *Metropolis*
And few lectures ahead ...

- Want to work toward the stochastic growth model as also basic recursive competitive equilibrium model.
- As a dynamic outcome where individuals and firms solve their decentralized optimal allocation problems independently.
- No planner.
- History (or State)-contingent, intertemporal relative prices, as the allocative mechanism.
- Resulting versions of first- and second fundamental welfare theorems. (Why?)
Model Setup

- Stochastic event $s_t \in S = \{s_1, ..., s_n\}$ for $t \in \mathbb{N}$.
- Publicly observable history of events up to and including t: $h^t = (s_0, s_1, ..., s_t) \in S^t$.
- Unconditional probability of h^t given by probability measure $\pi_t(h^t)$.
- W.l.o.g., assume $\pi(s_0) = 1$.
- Probability of observing h^t conditional on realization of h^τ is $\pi(h^t|h^\tau)$, for any $t \geq \tau$.
Model Setup

- \(I \) agents indexed by \(i = 1, \ldots, I \).
- Agent \(i \)'s
 - Endowment: \(y^i_t (h^t) \)
 - history-dependent consumption plan, \(c^i_t = \{ c^i_t (h^t) \}_{t=0}^{\infty} \) for each \(h^t \in S^t \)
 - expected utility criterion:

\[
U (c^i) = \mathbb{E}_0 \left\{ \sum_{t=0}^{\infty} \beta^t u^i (c^i_t (h^t)) \right\} = \sum_{t=0}^{\infty} \sum_{h^t} \beta^t u^i (c^i_t (h^t)) \pi_t (h^t)
\]

where
- \(u' (c) > 0, u'' (c) < 0 \)
- \(\lim_{c \downarrow 0} u' (c) = +\infty \)

to ensure \(c_t > 0 \) for all \(t \)
Model Setup

A feasible allocation must satisfy

\[
\sum_{i=1}^{I} c_i^t (h^t) \leq \sum_{i=1}^{I} y_i^t (h^t)
\]

for all \(t \) and for all \(h^t \).
Remember?
A first-order necessary condition for Pareto optimum is

$$
\beta^t u' \left(c^i_t \left(h^t \right) \right) \pi_t \left(h^t \right) = \frac{\theta_t \left(h^t \right)}{\lambda_i}
$$

for all $i = 1, \ldots, I$, and for all $t \geq 0$ and all h^t.
Remember?

Consider two agents, $i \neq j$. The ratio of their marginal utilities at each period, for all possible histories, is

$$\frac{u'(c^i_t(h^t))}{u'(c^j_t(h^t))} = \frac{\lambda_j}{\lambda_i}$$

This implies:

$$c^i_t(h^t) = u'^{-1} \left[\frac{\lambda_j}{\lambda_i} u'(c^j_t(h^t)) \right]$$
Theorem

A Pareto optimal allocation is a function of the realized aggregate endowment and does not depend on

1. the particular history h^t leading up to that outcome, nor
2. the realization of individual endowments,

so that if $h^t \neq h^\tau$ are such that $\sum_j y^j_t (h^t) = \sum_j y^j_\tau (h^\tau)$ then $c^i_t (h^t) = c^i_\tau (h^\tau)$.
Corollary (First fundamental welfare theorem)

The competitive equilibrium is a particular Pareto optimal allocation, where $\mu_i = \lambda_i^{-1}$ for all $i = 1, \ldots, I$, is unique (up to a multiplication by a positive scalar). Furthermore, the shadow prices for the planner $\theta_t \left(h^t \right)$ are equal to Arrow-Debreu equilibrium prices $q^0_t \left(h^t \right)$.
What Next?

- We have already characterized Pareto-optimal allocation (PO).
- We have studied one assumption for a decentralized market economy: ADE
- Next we study alternative SME. Note along the way, connections btw SME and ADE via asset pricing relationships.
- W.t.s. FWT: Allocative “equivalence” between ADE and SME and PO.
Sequential Markets Economy

Market trading structure – assumptions:

- Trade occurs at each $t \in \mathbb{N}$.
- Trade in one-period complete Arrow securities.
- At each t reached with history h^t, traders meet to trade for history h^{t+1}-contingent goods deliverable in $t + 1$.
Example

\[S = \{0, 1\} \]. At \(t = 2 \), trades occurs for only \(t = 3 \) goods at states that can be reached from the realized \(t = 2 \) history, \(h^2 = (0, 1, 1) \).
Preliminaries: Two new items ...

Now markets exist *sequentially*.

At start of each period t, after each h^t, traders need to keep track of what is *feasibly tradable*.

This depend on:

1. Wealth as a state variable.
2. A restriction that prevents forever-borrowing schemes by agents.

Remark. These two things not needed in ADE. Why?
Relevant state variable

- Need to find an appropriate *individual* state variable.
- This state variable tracks available opportunity set; to provide the right choices of consumption so that there will be enough resources left for future trades on contingent claims.
- State variable is the present value (in terms of history h^t and date t) of expected current and future net claims – i.e. current wealth of the consumer.
ADE again! Agent i’s wealth at time-t is just the time-t expected value of all her current and future net claims conditional on time-t, history h^t:

$$\Omega^i_t (h^t) = \sum_{\tau=t}^{\infty} \sum_{h^\tau|h^t} q^t_\tau (h^\tau) d_\tau (h^\tau)$$

$$= \sum_{\tau=t}^{\infty} \sum_{h^\tau|h^t} q^t_\tau (h^\tau) [c^i_\tau (h^\tau) - y^i_\tau (h^\tau)]$$

But,

$$q^t_\tau (h^\tau) = \beta^{\tau-t} u' \left(c^i_\tau (h^\tau) \right) \pi_\tau \left(h^\tau | h^t \right)$$

Note $\Omega^i_t (h^t)$ has the same expression as the value of a tail asset!
Since, aggregate endowment must equal aggregate consumption (following any h^t), then

$$\sum_{i=1}^{I} \Omega^i_t (h^t) = 0.$$

for all t and all h^t.

Remarks:

- The cross-sectional distribution of tail wealth across all agents i sums to zero, since all contingent debt sellers are balanced out by buyers.
- When we move from this ADE to the SME, we can relate this tail wealth of each i, $\Omega^i_t (h^t)$, to the time t history h^t individual asset of the sequential markets world.
SBC and Debt limits

- In ADE, households face a single intertemporal budget constraint that ensures intertemporal solvency.
- In the sequential markets setting, there will be a sequence of budget constraints, indexed by t and h^t.
- Need to ensure sequential asset trades are not open to “Ponzi schemes” – i.e. consumers cannot forever be consuming more than their endowments.
- We will consider the weakest possible restrictions called “natural debt limits”.

Definition (Natural debt limit)

Let the Arrow-Debreu price in terms of the time \(t \) history \(h^t \) numeraire good be \(q^t_\tau (h^\tau) \) for \(\tau \geq t \). The value of the tail of \(i \)'s endowment sequence at time \(t \) given history \(h^t \),

\[
A^i_t (h^t) = \sum_{\tau = t}^{\infty} \sum_{s^\tau | h^t} q^t_\tau (h^\tau) y^i_\tau (s^\tau)
\]

is the natural debt limit at time \(t \) and history \(h^t \).
Remarks

\[A^i_t (h^t) = \sum_{\tau=t}^{\infty} \sum_{s^\tau|h^t} q^t_\tau (h^\tau) y^i_\tau (s^\tau) \]

- The maximal amount that \(i \) can repay his debt starting from time \(t \) is thus the tail value of his endowment starting out from time \(t \) given history \(h^t \).
- Alternatively, this says the worst \(i \) can do is to consume zero forever from time \(t \) to repay existing debt at time \(t \) history \(h^t \).
- At each time \(t \), \(i \) will face one such borrowing constraint for each possible realization \(h^{t+1} \) the next period.
Sequential trades: Timing and Actions

Markets are open for trade in one period-ahead state-contingent claims every period.

1. h^t realized
2. Relevant claim $\tilde{a}_t^i(h^t)$ realized
3. Agent i chooses $c_t^i(h^t)$ realized

$h^{t+1} = (h^t, s_{t+1})$

1. Endowment $y_t^i(h^t)$ realized
2. Relevant claim $\tilde{a}_t^i(h^t)$ realized
3. Agent i chooses $\{\tilde{a}_{t+1}^i(s_{t+1}, h^t)\} \in \mathbb{R}^n$ realized

\[\tilde{a}_{t+1}^i(h^{t+1}) \]
Suppose the pricing kernel $\tilde{Q}_t (s_{t+1} | h^t)$ exists.

$\tilde{Q}_t (s_{t+1} | h^t)$: price of one unit of time $t + 1$ consumption, contingent on realization of s_{t+1} in $t + 1$, given t-history h^t.

Agent i’s sequence of budget constraints:

$$\tilde{c}_t^i (h^t) + \sum_{s_{t+1}} \tilde{a}_{t+1}^i (s_{t+1}, h^t) \tilde{Q}_t (s_{t+1} | h^t) \leq y_t^i (h^t) + \tilde{a}_t^i (h^t)$$

for $t \geq 0$, at each h^t.
Note at time t, given h^t, i chooses

- Current consumption: $\tilde{c}_i^t(h^t)$, and
- Quantities of all possible n number of state-contingent claims next period:

$$\left(\tilde{a}_{i+1}^t(s_{t+1}, h^t)\right) \in \mathbb{R}^n$$
No-Ponzi borrowing constraint:

\[-\tilde{a}_{t+1}^i (s_{t+1}) \leq A_{t+1}^i (h^{t+1}) = \sum_{\tau=t+1}^{\infty} \sum_{h^\tau|h^{t+1}} q_{\tau}^{t+1} (h^\tau) y_{\tau}^i (h^\tau).\]

Huh? ...

- Amount of debt \(i\) brings into all possible \(s_{t+1} \in S\),
- \textit{Must} be repayable, in the worst case,
- by expected discounted (real) value of tail endowments, remaining from \(t + 1\) onward.
- Worst case: consume nothing forever from \(t + 1\) on ...! Merd!
Agent i chooses $\{c_t^i(h^t), \tilde{a}_{t+1}^i(s_{t+1}, h^t)\}_{t=0}^{\infty}$ to:

$$\max \sum_{t=0}^{\infty} \sum_{h^t} \left\{ \beta^t u(\tilde{c}_t^i(h^t)) \pi_t(h^t) \right. \right.$$

$$+ \eta_t^i(h^t)[y_t^i(h^t) + \tilde{a}_t^i(h^t)$$

$$- \tilde{c}_t^i(h^t) - \sum_{s_{t+1}} \tilde{a}_{t+1}^i(s_{t+1}, h^t) \tilde{Q}_t(s_{t+1}|h^t) \right.$$

$$+ \nu_t^i(h^t; s_{t+1}) \tilde{a}_{t+1}^i(s_{t+1}, h^t) + A_{t+1}^i(h^{t+1}) \right\}$$

for given initial wealth $\tilde{a}_0^i(h^0)$.
Remarks: Following each h^t,

- There are n no-Ponzi constraints to consider. Why?
- So there are n Lagrange multipliers $\nu^i_t (h^t; s_{t+1})$, one for each possible $s_{t+1} \in S$.
- For each s_{t+1} need to calculate upper bound on negative assets:

$$A^i_{t+1} (h^{t+1}) = \sum_{\tau=t+1}^{\infty} \sum_{h^\tau|h^{t+1}} q^{t+1}_\tau (h^\tau) y^i_\tau (h^\tau).$$
Optimal decision by agents i:
No-Ponzi constraints not binding. Why? So $\nu^i_t (h^t; s_{t+1}) = 0$ for all t, all h^t.

Then necessary (and sufficient) condition for optimal consumption-asset-accumulation strategy is

$$\tilde{Q}_t (s_{t+1}|h^t) = \beta \frac{u' (\tilde{c}^i_{t+1} (h^{t+1}))}{u' (\tilde{c}^i_t (h^t))} \pi_t (h^{t+1}|h^t)$$

for all $s_{t+1}, t \geq 0$ and h^t.

Crickey! This is a familiar looking one-period pricing kernel we encountered in the Arrow-Debreu economy!
Definition

A **distribution of wealth** is a vector \(\tilde{\mathbf{a}}_t (h^t) = \{\tilde{a}_i^i (h^t)\}_{i=1}^I \) satisfying \(\sum_i \tilde{a}_i^i (h^t) = 0 \).

Definition

A **sequential trading competitive equilibrium** is an initial distribution of wealth \(\tilde{\mathbf{a}}_0 (s_0) \), an allocation (sequence of allocations for all agents) \(\{\tilde{c}_i^i\}_{i=1}^I \) and pricing kernels \(\tilde{Q}_t (s_{t+1} | h^t) \) such that

1. for all \(i \), given \(\tilde{\mathbf{a}}_0^i (s_0) \) and \(\tilde{Q}_t (s_{t+1} | h^t) \), the consumption allocation \(\tilde{c}_i^i = \{\tilde{c}_i^t\}_{t=0}^\infty \) solves agent \(i \)'s optimization problem;

2. for all realizations of \(\{h^t\}_{t=0}^\infty \) the agent’s consumption allocation and implied asset portfolios \(\{\tilde{c}_i^t (h^t), \{\tilde{a}_i^i (s_{t+1}, h^t)\}_{s_{t+1}}\}_{t \in \mathbb{N}} \) satisfy \(\sum_i \tilde{c}_i^i (h^t) = \sum_i y_i^i (h^t) \) and \(\sum_i \tilde{a}_i^i (s_{t+1}, h^t) = 0 \) for all \(s_{t+1} \).
Theorem

The time-0 trading arrangement in the Arrow-Debreu equilibrium with complete markets has the same allocations as the sequential trading arrangement with one-period complete Arrow securities,

\[
\{c^i\}_{i=1}^I = \{\widetilde{c}^i\}_{i=1}^I ,
\]

for an appropriate initial distribution of wealth in the sequential markets equilibrium, \(\{\widetilde{a}_{0}(s_0)\}_{i=1}^I\).
Proof.

First we show “ADE ⇒ SME”.

- Take Arrow-Debreu equilibrium \(q_t^0 (h^t) \) as given.

- Suppose \(\exists \tilde{Q}_t (s_{t+1}|h^t) \) satisfying recursion
 \[
 q_{t+1}^0 (h^{t+1}) = \tilde{Q}_t (s_{t+1}|h^t) q_t^0 (h^t)
 \]
 \[
 \iff \tilde{Q}_t (s_{t+1}|h^t) = \frac{q_{t+1}^0 (h^{t+1})}{q_t^0 (h^t)} = q_{t+1}^0 (h^{t+1}).
 \]

- To show guess is true, take Arrow-Debreu equilibrium first-order conditions from two successive periods and write:
 \[
 \beta \frac{u' (c_{t+1}^i (h^{t+1}))}{u' (c_t^i (h^t))} \pi_t (h^{t+1}|h^t) = \frac{q_{t+1}^0 (h^{t+1})}{q_t^0 (h^t)}
 \]
Proof (cont’d).

But then if guess is true, it must be that

\[\beta \frac{u'(c_{t+1}^i(h^{t+1}))}{u'(c_t^i(h^t))} \pi_t(h^{t+1}|h^t) = \tilde{Q}_t(s_{t+1}|h^t) \]

\[= \beta \frac{u'(\tilde{c}_{t+1}^i(h^{t+1}))}{u'(\tilde{c}_t^i(h^t))} \pi_t(h^{t+1}|h^t). \]

So then, Arrow-Debreu equilibrium is equivalent to the sequential markets equilibrium in terms of allocations,

\[\left\{ c^i \right\}_{i=1}^I = \left\{ \tilde{c}^i \right\}_{i=1}^I. \]
Proof (cont’d).

Next we show “ADE ⇐ SME”:

- Pick \(\{ \widetilde{a}_0^i (s_0) \}_{i=1}^I \) s.t. SBCs in SME consistent with IBC for ADE. Guess that \(\{ \widetilde{a}_0^i (s_0) \}_{i=1}^I = 0_{I \times 1} \).

- Why? In Arrow-Debreu equilibrium, at time 0, agents bring in only their endowments, \(y_0^i (s_0) \).

- At \(t \geq 0 \) and history \(h^t \), \(i \) chooses asset portfolio, \(\widetilde{a}_{t+1}^i (s_{t+1}, h^t) = \Omega_{t+1}^i (h^{t+1}) \) for all \(s_{t+1} \).

- The expected value in date \(t \) terms is

\[
\sum_{s_{t+1}} \widetilde{a}_{t+1}^i (s_{t+1}, h^t) \quad \widetilde{Q}_t (s_{t+1} | h^t) = \sum_{s_{t+1}} \Omega_{t+1}^i (h^{t+1}) q_{t+1}^i (h^{t+1})
\]

\[
= \sum_{\tau=t+1}^{\infty} \sum_{h^\tau | h^t} q_{\tau}^t (h^\tau) \left[c_{\tau}^i (h^\tau) - y_{\tau}^i (h^\tau) \right]
\]

just the tail value of wealth!
Proof (cont’d).

• Show that \(i \) can afford this portfolio strategy. Use SME SBCs. At time 0 given \(\tilde{a}^i_0 (s_0) = 0 \),

\[
\tilde{c}^i_0 (s_0) + \sum_{t=1}^{\infty} \sum_{h^t} q^0_t (s_t) \left[c^i_t (h^t) - y^i_t (h^t) \right] = y^i_t (s_0) + 0
\]

• But this is the same as IBC in the ADE.

• So \(\tilde{c}^i_0 (s_0) = c^i_0 (s_0) \).
Proof.

- For all $t > 0$, we can write $\tilde{a}^i_t (h^t) = \Omega^i_t (h^t)$, and the time t, h^t-BC is

$$\tilde{c}^i_t (h^t) + \sum_{s_{t+1}} \tilde{a}^i_{t+1} (s_{t+1}, h^t) \tilde{Q}_t (s_{t+1}|h^t) = y^i_t (h^t) + \tilde{a}^i_t (h^t)$$

$$\Rightarrow \sum_{s_{t+1}} \tilde{a}^i_{t+1} (s_{t+1}, h^t) \tilde{Q}_t (s_{t+1}|h^t) = \Omega^i_t (h^t) - [\tilde{c}^i_t (h^t) - y^i_t (h^t)]$$

$$\Rightarrow \sum_{s_{t+1}} \Omega^i_{t+1} (h^{t+1}) q^i_{t+1} (h^{t+1}) = \Omega^i_t (h^t) - [\tilde{c}^i_t (h^t) - y^i_t (h^t)]$$

$$\Rightarrow \sum_{\tau=t+1}^{\infty} \sum_{h^\tau|h^t} q^i_\tau (h^\tau) \left[c^i_\tau (h^\tau) - y^i_\tau (h^\tau) \right]$$

$$= \Omega^i_t (h^t) - [\tilde{c}^i_t (h^t) - y^i_t (h^t)]$$

It then follows that $\tilde{c}^i_t (h^t) = c^i_t (h^t)$ for all t and h^t.

\[\square\]
Notes

The equivalence between Arrow-Debreu equilibrium and Arrow's sequential markets equilibrium follows from two key factors:

- Agents are v.N-M expected utility maximizers – their once-and-for-all time 0 choices are *time consistent*. Past actions affect future payoffs but future actions do not affect past payoffs.

- Under complete markets, the budget sets defined by the two formulations are equivalent, and thus Arrow-Debreu equilibrium prices of contingent claims are equal to Arrow’s spot prices weighted by the price in period 1 of the appropriate Arrow security.
Recursive (Markov) Competitive Equilibrium

- The assumptions about the state variables so far in the Arrow-Debreu equilibrium and sequential markets equilibrium economies are too general to be useful – at each t, state variables are made up of the entire history leading up to t, i.e. $h^t := (s_0, s_1, ..., s_t)$.

- For practical purposes, we need to discipline the evolution of the state further – e.g. to be Markovian – so only a few state variables suffice to describe the position of the economy at each time period.

- We’ll look at a recursive competitive equilibrium formulation of the sequential markets equilibrium and Arrow-Debreu equilibrium.
Endowments with Markov property

Consider the state space, \(S \). So exogenous event is \(s \in S \). Let \(s \) be governed by a Markov chain:

- \(\pi_0 (s) = \Pr (s_0 = s) \).
- \(\pi (s'|s) = \Pr (s_{t+1} = h'|s_t = s) \).

The Markov chain induces a sequence of probability measures on histories \(h^t \). The probability of realizing history \(h^t \) is

\[
\pi_t (h^t) = \pi (s_t|s_{t-1}) \pi (s_{t-1}|s_{t-2}) \cdots \pi (s_1|s_0) \pi_0 (s_0).
\]

where it is assumed \(\pi_0 (s_0) = 1 \).
The Markov property says that

$$\pi_t (h^t | h^k) = \pi (s_t | s_{t-1}) \pi (s_{t-1} | s_{t-2}) \cdots \pi (s_{k+1} | s_k)$$

where $\pi_t (h^t | h^k)$ depends only on state s_k at $k < t$ and the history prior to k is redundant.

Example

$$\pi_3 (h^3 | h^2) = \pi_3 ((s_0, s_1, s_2, s_3) | (s_0, s_1, s_2)) = \pi (s_3 | s_2).$$

Then, for each $i = 1, \ldots, I$, we can write endowments as

$$y^i_t (h^t) = y^i (s_t)$$

Since s_t is a Markov process, $y^i_t (s_t)$ will also be a Markov process.
Equilibrium inherits Markov property

Theorem

Given $y^i_t (s^t)$ a Markov process, the Arrow-Debreu equilibrium price of date-τ history h^τ consumption goods in terms of date t, $0 \leq t \leq \tau$, history h^t goods is not history dependent:

$q^t_\tau (h^\tau) = q^k_j \left(\tilde{h}^k \right)$ for $j, k \geq 0$ such that $\tau - t = k - j$ and $(s_t, s_{t+1}, ..., s_\tau) = (\tilde{s}_j, \tilde{s}_{j+1}, ..., \tilde{s}_k)$.
Remark. Natural debt limits and household wealth are also history independent: \(A^i_t(s^t) = A^i(s^t) \) and \(\Omega^i_t(s^t) = \Omega^i(s^t) \).

- Each agent enters every period with wealth independent of past endowment realizations.
- Past trades have fully insured away all idiosyncratic endowment risks.
- So an agent enters the current period with current-state contingent wealth just sufficient to fund a trading scheme that insures against future idiosyncratic risks.
- The pricing kernel \(Q(s_t | s_{t-1}) \) thus provides the correct signal, along with market clearing, to coordinate trade in time \(t - 1 \) such that all idiosyncratic risks are eliminated.
- However, if there are aggregate risks, they would still have to be borne by all agents.
Now $y^t_i(s_t)$ Markov.

Agent i’s competitive equilibrium sequence problem, given $Q(s'|s)$, is now recursive:

$$v^i(a, s) = \max_{c, \hat{a}(s')} \left\{ u(c) + \beta \sum_{s'} v^i(\hat{a}(s'), s') \pi(s'|s) \right\}$$

subject to

$$c + \sum_{s'} \hat{a}(s') Q(s'|s) \leq y^i(s) + a$$

$$c \geq 0$$

$$-\hat{a}(s') \leq A^i(s') \text{ for all } s' \in S.$$
Let the optimal decision rules associated with the fixed-point solution of the Bellman equation be

\[c = h^i (a, s) \]

\[\hat{a} (s') = g^i (a, s, s') \]

for each \(i = \{1, \ldots, I\} \).
We can show that this optimal solution depends on the price kernel $Q(s' | s)$.

Evaluate the first-order condition for the RHS of each Bellman equation and apply the Benveniste-Scheinkman formula to get

$$Q (s_{t+1} | s_t) = \beta \frac{u' (c^{i}_{t+1})}{u' (c^{i}_{t})} \pi (s_{t+1} | s_t)$$

where $c = h^{i} (a, s)$ and $\tilde{a} (s') = g^{i} (a, s, s')$.
Definition

A recursive competitive equilibrium is an initial distribution of wealth $\{a_0^i\}_{i=1}^I$, a pricing kernel $Q(s'|s)$, sets of value functions $\{v^i(a, s)\}_{i=1}^I$, and decision rules $\{h^i(a, s), g^i(a, s, s')\}_{i=1}^I$ such that

1. for all i, given a_0^i and the pricing kernel, the decision rules solve the household i's problem;

2. for all histories $\{s_t\}_{t=0}^\infty$, the consumption and assets $\{\{c_t^i, \hat{a}_{t+1}^i(s')\}_{s'}\}_{t=0}^\infty$ implied by the decision rules satisfy $\sum_i c_t^i = \sum_i y^i(s_t)$ and $\sum_i \hat{a}_{t+1}^i(s') = 0$ for all t and s'.
j-step ahead pricing kernel

- Since a complete set of markets exists for all j periods ahead contingent claims,
- a consumer i, at the end of period t, can always buy $z_{t,j}^i(s_{t+j})$ units of contingent consumption claims, for $j \geq 1$.
- Recall that agent i’s sequential budget constraint is

\[
c_t^i + \sum_{s_{t+1}} Q_1(s_{t+1}|s_t)a_{t+1}^i(s_{t+1}) \leq y^i(s_t) + a_t^i.
\]
The agent’s next period wealth depends on next period state \(s_{t+1} \) and the composition of the asset portfolio:

\[
a^i_{t+1}(s_{t+1}) = z^i_{t,1}(s_{t+1}) + \sum_{j=2}^{\infty} \sum_{s_{t+j}} Q_{j-1}(s_{t+j}|s_{t+1}) z^i_{t,j}(s_{t+j}).
\]

So the outcome \(s_{t+1} \) will determine which element of the \(n \)-dimensional vector

\[
\begin{bmatrix}
z^i_{t,1}(s_{t+1} = s_1) \\
\vdots \\
z^i_{t,1}(s_{t+1} = s_n)
\end{bmatrix}
\]

pays off at time \(t + 1 \).

But this is only one component of time \(t + 1 \) wealth.
\[
a_t(s_{t+1}) = z_t(s_{t+1}) + \sum_{j=2}^{\infty} \sum_{s_{t+j}} Q_{j-1}(s_{t+j} | s_{t+1}) z_{t,j}(s_{t+j}).
\]

- The second term on the RHS, conditional of outcome \(s_{t+1} \) when time \(t + 1 \) arrives, is the expected (capital gains or losses) from holding longer term claims on \(t + 1 + j, j \geq 1 \), consumption.
- Together they make up next-period – i.e. \(t + 1 \) – wealth if \(s_{t+1} \in S \) is to be realized.
- Using this fact, the sequence of budget constraints becomes

\[
c_t^i + \sum_{j=1}^{\infty} \sum_{s_{t+j}} Q_j(s_{t+j} | s_t) z_{t,j}(s_{t+j}) \leq y^i(s_t) + a_t^i.
\]
Note that the first-order condition for an optimal plan by agent i will imply that

$$Q_j(s_{t+j}|s_t) = \beta \sum_{s_{t+1} \in S} \frac{u'[c_t^{i}(s_{t+1})]}{u'[c_t^{i}(s_t)]} \pi(s_{t+1}|s_t)Q_{j-1}(s_{t+j}|s_{t+1}).$$

Since agent’s optimal RCE strategy also requires satisfying,

$$Q_1(s_{t+1}|s_t) := Q(s_{t+1}|s_t) = \beta \frac{u'(c_{t+1}^{i})}{u'(c_t^{i})} \pi(s_{t+1}|s_t)$$

we then have

$$Q_j(s_{t+j}|s_t) = \sum_{s_{t+1} \in S} Q_1(s_{t+1}|s_t)Q_{j-1}(s_{t+j}|s_{t+1}),$$

a recursive formula for computing j-step ahead pricing kernels for $j = 2, 3,$
Arbitrage-free pricing and redundant assets

- Suppose, apart from purchasing $z_{t,j}(s_{t+j})$ units of j-step ahead complete Arrow securities, Sam also trades an ex-dividend stock called a Lucas tree.
- A unit of this stock allows Sam to have the right to a unit of fruit or dividend $d(s_{t+1})$ from this Lucas tree, if state s_{t+1} occurs.
- Sam can buy N_t units of this stock. The ex-dividend price is $p(s_t)$.
- So Sam can obtain $N_t[p(s_{t+1}) + d(s_{t+1})]$ units of consumption in $t + 1$ if s_{t+1} occurs then.
See notes and LS, Ch.8 for details....

In equilibrium, two arbitrage-free pricing conditions

\[
p(s_t) = \sum_{s_{t+1}} Q_1(s_{t+1} | s_t) [p(s_{t+1}) + d(s_{t+1})],
\]

\[
Q_j(s_{t+j} | s_t) = \sum_{s_{t+1}} Q_{j-1}(s_{t+j} | s_{t+1}) Q_1(s_{t+1} | s_t), \quad j = 2, 3, \ldots
\]

for all \(t \in \mathbb{N} \).

Meaning?